757 research outputs found

    Interoperable services based on activity monitoring in ambient assisted living environments

    Get PDF
    Ambient Assisted Living (AAL) is considered as the main technological solution that will enable the aged and people in recovery to maintain their independence and a consequent high quality of life for a longer period of time than would otherwise be the case. This goal is achieved by monitoring human’s activities and deploying the appropriate collection of services to set environmental features and satisfy user preferences in a given context. However, both human monitoring and services deployment are particularly hard to accomplish due to the uncertainty and ambiguity characterising human actions, and heterogeneity of hardware devices composed in an AAL system. This research addresses both the aforementioned challenges by introducing 1) an innovative system, based on Self Organising Feature Map (SOFM), for automatically classifying the resting location of a moving object in an indoor environment and 2) a strategy able to generate context-aware based Fuzzy Markup Language (FML) services in order to maximize the users’ comfort and hardware interoperability level. The overall system runs on a distributed embedded platform with a specialised ceiling- mounted video sensor for intelligent activity monitoring. The system has the ability to learn resting locations, to measure overall activity levels, to detect specific events such as potential falls and to deploy the right sequence of fuzzy services modelled through FML for supporting people in that particular context. Experimental results show less than 20% classification error in monitoring human activities and providing the right set of services, showing the robustness of our approach over others in literature with minimal power consumption

    A computational intelligence approach to efficiently predicting review ratings in e-commerce

    Get PDF
    Sentiment analysis, also called opinion mining, is currently one of the most studied research fields which aims to analyse people's opinions. E-commerce websites allow users to share opinions about a product/service by providing textual reviews along with numerical ratings. These opinions greatly influence future consumer purchasing decisions. This paper introduces an innovative computational intelligence framework for efficiently predicting customer review ratings. The framework has been designed to deal with the dimensionality and noise which is typically apparent in large datasets containing customer reviews. The proposed framework integrates the techniques of Singular Value Decomposition (SVD) and dimensionality reduction, Fuzzy C-Means (FCM) and the Adaptive Neuro-Fuzzy Inference System (ANFIS). The performance of the proposed approach returned high accuracy and the results revealed that when large datasets are concerned, only a fraction of the data is needed for creating a system to predict the review ratings of textual reviews. Results from the experiments suggest that the proposed approach yields better prediction performance than other state-of-the-art rating predictors which are based on the conventional Artificial Neural Network, Fuzzy C-Means, and Support Vector Machine approaches. In addition, the proposed framework can be utilised for other classification and prediction tasks, and its neuro-fuzzy predictor module can be replaced by other classifiers

    Yukawa sector in non-supersymmetric renormalizable SO(10)

    Full text link
    We discuss the ordinary, non-supersymmetric SO(10) as a theory of fermion masses and mixings. We construct two minimal versions of the Yukawa sector based on 126ˉH\bar{126}_H and either 10H10_H or 120H120_H. The latter case is of particular interest since it connects the absolute neutrino mass scale with the size of the atmospheric mixing angle θA\theta_A. It also relates the smallness of VcbV_{cb} with the largeness of θA\theta_A. These results are based on the analytic study of the second and third generations. Furthermore, we discuss the structure of the light Higgs and the role of the Peccei-Quinn symmetry for dark matter and the predictivity of the theory.Comment: 8 pages. Reference added, one formula correcte

    Analytical and pharmacological aspects of therapeutic drug monitoring of mTOR inhibitors

    Get PDF
    Mammalian Target Of Rapamycin (mTOR) inhibitors represent a new class of immunosuppressant drugs extensively used for the prevention and the treatment of graft rejection in organ transplant recipients. Their current use is due to referred low nephrotoxic effects, particularly important in kidney transplanted and/or patients with renal failure. The most representative drugs of such class are Sirolimus (Siro) and Everolimus (Rad). Both drugs show a narrow therapeutic window, therefore, monitoring of whole-blood drug levels is recommended in order to optimize the therapy. Among the available assays, Liquid Chromatography coupled with UltraViolet or Electrospray Tandem Mass Spectrometry methods (LC/UV or LC/ESI-MSMS) are the most accurate and specific ones. A reliable alternative is represented by immunoassays, which offer the opportunity to minimize sample pre-treatment, thus reducing the time between drawing blood sample and measuring the drug concentration, an important aspect in high-throughput analyses. Despite this, a limitation in the use of immunoassays for therapeutic drug monitoring is the lower specifity compared with the chromatographic methods when analysing structurally-related drugs. New insights to optimize mTOR inhibitors regimens seem to be offered by the evaluation of CYP450 3A activity by using the probe drug approach. To such purpose, there are a number of major probe drugs used for in vivo studies including: midazolam, cortisol, lidocaine, nifedipine, dextromethorphan, erythromycin, dapsone and alfentanil. The aim of the present paper is to report the most recent knowledge concerning this issue, supplying a critical and comprehensive review for whom are involved both in the clinical and analytical areas

    Fuzzy logic on quantum annealers

    Get PDF
    Quantum computation is going to revolutionize the world of computing by enabling the design of massive parallel algorithms that solve hard problems in an efficient way, thanks to the exploitation of quantum mechanics effects, such as superposition, entanglement and interference. These computational improvements could strongly influence the way how fuzzy systems are designed and used in contexts, such as big data, where computational efficiency represents a non-negligible constraint to be taken into account. In order to pave the way towards this innovative scenario, this paper introduces a novel representation of fuzzy sets and operators based on Quadratic Unconstrained Binary Optimization (QUBO) problems, so as to enable the implementation of fuzzy inference engines on a type of quantum computers known as quantum annealers

    One-loop effective potential for SO(10) GUT theories in de Sitter space

    Full text link
    Zeta-function regularization is applied to evaluate the one-loop effective potential for SO(10) grand-unified theories in de Sitter cosmologies. When the Higgs scalar field belongs to the 210-dimensional irreducible representation of SO(10), attention is focused on the mass matrix relevant for the SU(3)xSU(2)xU(1) symmetry-breaking direction, to agree with low-energy phenomenology of the particle-physics standard model. The analysis is restricted to those values of the tree-level-potential parameters for which the absolute minima of the classical potential have been evaluated. As shown in the recent literature, such minima turn out to be SO(6)xSO(4)- or SU(3)xSU(2)xSU(2)xU(1)-invariant. Electroweak phenomenology is more naturally derived, however, from the former minima. Hence the values of the parameters leading to the alternative set of minima have been discarded. Within this framework, flat-space limit and general form of the one-loop effective potential are studied in detail by using analytic and numerical methods. It turns out that, as far as the absolute-minimum direction is concerned, the flat-space limit of the one-loop calculation about a de Sitter background does not change the results previously obtained in the literature, where the tree-level potential in flat space-time was studied. Moreover, when curvature effects are no longer negligible in the one-loop potential, it is found that the early universe remains bound to reach only the SO(6)xSO(4) absolute minimum.Comment: 25 pages, plain Tex, plus Latex file of the tables appended at the end. Published in Classical and Quantum Gravity, Vol. 11, pp. 2031-2044, August 199

    Developing a cloud-based service-oriented architecture for fuzzy logic systems

    Get PDF
    Fuzzy logic systems are customarily related to specific hardware or software systems. Nevertheless, it has been observed that distributed and cloud-based architectures of various intelligent systems are pouring intensifying attention. While the distributed architectures can potentially add values in developing fuzzy systems, a lack of standard methods and practices may limit their public use. This study aims to provide a standard solution for developing cloud-based service-oriented architectures for fuzzy logic systems, based on extending IEEE-1855 (2016) in the defining system and exchanging data. Experiments were performed employing simulation concerning collection, processing and monitoring of data in a distributed manner over the web. A real-time human activity recognition simulated scenario is also demonstrated through a cloud-based fuzzy system
    • …
    corecore